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ABSTRACT

This thesis focuses on two im portant aspects of runtime support for parallel and distributed 
applications. First, we present the design and implementation of Clam, a runtime system 
which provides one-sided communication with the support for global name-space, object mi­
gration, and transparent routing of messages to objects. Second, we perform a comparative 
study of techniques used for managing location information of mobile objects within Clam. 
The performance evaluation of the runtime system justifies the design decisions we have 
made and shows the advantages of the implementation over similar libraries. The study of 
location management reveals th a t for some distributed applications an intelligent choice of 
location management policy is a crucial contributing factor to the application performance.
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Chapter 1

Introduction

In this thesis we focus on software runtime support system for asynchronous adaptive and 

irregular applications, like Adaptive Mesh Generation and Refinement (AMR). Specifically, 

we describe an efficient implementation of one-sided communication and global address 

space, which is crucial for these applications. Existing runtime environments either do not 

have these capabilities or have a number of caveats, like poor portability, th a t complicate 

their wide-spread usage.

There are two major contributions of this thesis. First, we design and implement an 

efficient portable runtime system tha t addresses the computation and communication re­

quirements of applications like parallel AMR. Our approach is based on careful balance of 

three im portant issues: correctness, performance, and ease-of-use. The preliminary results 

show tha t the implementation is portable, easy to use, and introduces low overheads over 

the underlying low-level communication substrate. Second, we present an evaluation of the 

location management mechanisms implemented within the runtime system. To the best of 

our knowledge, location management has not been studied previously in this context. Our 

results indicate th a t location management is critical for certain applications and thus must 

be carefully considered during the application design.

2
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The runtime system we present here provides customized runtime support for asyn­

chronous adaptive and irregular applications. The computations in such applications can 

be tightly or partially coupled, or decoupled. The level of coupling is determined by the in­

tensity of the communication and by the level of dependency between communicating tasks. 

Communication intensive applications generate large amounts of messages in short time pe­

riods. For AMR applications this means from tens to hundreds of thousands of messages 

per second. Some applications can postpone processing of the incoming messages without 

delaying the computation within a task. Others have to wait for incoming communication, 

or suspend until the previously posted communication is acknowledged by the partner task. 

We call computations tightly coupled if they have strong dependencies (i.e., require syn­

chronous communication) and are communication intensive. If the communication is not 

intensive, but weak dependencies are present (i.e., communication can be asynchronous), 

the computation is called partially (or loosely) coupled. Applications which do not have 

any communication and /or dependencies are called decoupled.

The Portable Runtime Environment for Mobile Applications (PREMA) is a framework 

created to support the development of AMR-like applications. The Communication Layer 

for Asynchronous Mobile Computations (Clam) we describe in this thesis serves as a com­

munication component of the PREMA framework and is superior to the previously used 

implementation, as we show in our performance evaluation.

The problem of location management within Clam emerges from the adaptivity of the 

applications we aim to support. Because of this adaptivity, dynamic load-balancing is 

critical. Mobile object abstraction is provided by Clam for the purposes of balancing work- 

units among the processors. The data  dependencies often present in an application require
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mechanisms to “communicate” with the non-local work-units (objects). A Location Man­

agement Policy (LMP) implementation enables this communication in the context of object 

migration, or mobility.

In this thesis we survey existing approaches for location management. We identify a set 

of diverse LMPs, describe their strengths and weaknesses, perform an experimental study 

to evaluate their properties and their impact on the performance of the selected benchmark 

applications.

The rest of the thesis is structured as follows. In Chapter 2 we concentrate on the 

details of design and implementation of Clam. Chapter 3 introduces the problem of loca­

tion management, surveys existing approaches in related areas, and describes in detail the 

LMPs we selected for the evaluation. Chapter 4 presents our performance data from the 

evaluation of the runtime system and the selected LMPs. We conclude with the summary 

of contributions and directions for future work in Chapter 5.



Chapter 2

R untim e System

In this chapter we describe the design and implementation of the light Communication Layer 

for Asynchronous Mobile Computations (Clam)1. Our design and implementation are based 

on the balance of three im portant issues: correctness, performance, and ease-of-use. Our 

preliminary experience with Clam as a component of the Portable Runtime Environment 

for Mobile Applications (PREMA) shows an improvement in the overall quality of PREMA 

software in term s of portability, performance, and effectiveness.

2.1 Functionality

The computations associated with parallel adaptive and irregular applications, like mesh 

generation and refinement, are either tightly coupled or partially coupled. Computation and 

communication patterns for these applications are variable and unpredictable. One-sided 

communication paradigm substantially simplifies code development and maintainability for 

such applications. Clam supports one-sided communication in the context of data/object 

migration. Its functionality can be grouped as follows:

xThe name, Clam, reflects the desired features of the implementation: it should be small, strong and 
viable.

5
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• re m o te  m em o ry  o p e ra tio n s : put and get;

• re m o te  se rv ice  re q u e s t (R S R ): invocation of an application-defined function on a 

remote processor;

• m obile  o b je c t fu n c tio n a lity : creation, migration, and messaging for mobile objects.

Each processor is assigned a unique identifier. A user-defined set of functions, which 

should correspond to the predefined prototypes, is registered with the runtime system. 

These functions are called handlers. A handler can be invoked on a remote processor 

using the Clam API. There are four types of handlers: (1) memory operation, (2) RSR 

(fixed number of arguments), (3) RSRN (takes buffer as an argument) and (4) mobile object 

message handlers.

The targeted applications require efficient asynchronous communication support. Com­

munication primitives provided by Clam are non-blocking. Clam can communicate directly 

using user buffers and calling user-specified callback function when the communication is 

complete. If no callback function is provided, Clam will copy user data into a new buffer, 

so tha t the buffer can be reused upon the function return.

The mobile object functionality provides support for application adaptivity. Load- 

balancing is crucial in AMR applications. The application workload cannot be statically 

distributed because it is changing throughout the execution. Thus, work-units should m i­

grate among the processors. The workload local to a processor can be represented by the 

set of data objects in the memory of tha t processor (this is a particularly useful abstraction 

for AMR applications). During load-balancing, local work-units (objects) can migrate to 

the address space of remote processors. However, the computation is not decoupled in the
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general case: there may be dependencies between work-units located on different processors. 

Hence the requirement for communication support in the context of mobile objects.

Applications which use Clam can associate a mobile pointer with any data  object local 

to the processor’s memory. This procedure makes tha t object mobile in the context of 

Clam, and thus in the context of the application. Given a mobile pointer to an object, 

the application can send a message to  th a t object. When the application sends a message 

to a mobile pointer, it specifies the target mobile pointer, the message handler, and the 

arguments to be passed to the handler. The runtime system is responsible for delivery of 

this message to the object. A message will result in an invocation of the message handler 

on the processor, where the recipient object is currently located. W hen an object has to be 

migrate from one processor to another, it should be uninstalled using Clam API and after 

migration installed a t the new processor.

Clam is using single-threaded execution model. A separate thread may be used for 

communication purposes (although no additional threads are used in the current implemen­

tation). The application should explicitly call poll function of Clam in order for pending 

handlers to be executed; handlers are executed synchronously.

In addition to the described functionality, Clam provides barrier synchronization and 

quiescence detection primitives. Quiescence detection implements Safra’s term ination de­

tection algorithm described by Dijkstra in [24]. The system is quiescent when no handlers 

are awaiting execution and there is no pending communication. Such functionality proved 

to  be essential for application-level term ination detection. Efficient term ination detection 

is crucial for asynchronous application and for parallel mesh generation in particular.
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2.2 Design Considerations

There are three im portant issues to be considered in the design of a runtime system: correct­

ness, performance and ease-of-use. The design of Clam attem pts to balance these aspects.

The importance of correctness is specifically emphasized because of the one-sided nature 

of communication. In binary send/receive communication the application is responsible for 

avoiding communication deadlocks. One-sided communication is usually implemented on 

top of binary send/receive provided by the operating system. Thus, the burden of deadlock 

prevention is the responsibility of the runtime system. The one-sided communication func­

tionality of Clam is similar to this of Active Messages (AM) [48]. However, the limitations 

imposed by AM are too strict for the AMR applications. Clam relaxes these requirements: 

the only limitation for user handlers is tha t polling cannot be performed within the han­

dler. The effect is twofold. The relaxing of the model gives application developers more 

flexibility. At the same time, it introduces the possibility for deadlock: unrestricted com­

munication can eventually lead to memory exhaustion, which cannot be prevented by the 

runtime system.

Performance of the runtime system is determined by a number of components. First, 

the overheads introduced by the runtime system over the underlying communication should 

be small. Second, the use of the runtime system should not diminish the scalability of the 

application. Finally, the runtime system should not restrict the capability of application 

to use otherwise available system functionality. Minimum number of intermediate layers 

within the system results in fewer memory copies and faster message processing. Although 

it is appealing to  implement mobile object messaging on top of the Remote Service Request
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functionality, this would inevitably lead to additional overheads. The mobile object message 

functionality is implemented on the same level as RSR in Clam. Our performance evaluation 

shows the advantages of this design decision.

The Clam design addresses the ease-of-use requirement by defining small, nonetheless 

powerful, API. Discussions with applications developers made it possible to identify the 

core functionality required from the runtime system, define its clear semantics and avoid 

redundancy.

Portability of the runtime system is yet another design concern. Clam as a component 

of PREMA is designed to be highly portable and interoperable with existing systems. The 

primary interoperability problem we encountered is concerned with the MPI implementation 

(here and throughout this thesis, the MPI implementation used in Clam and discussed in 

the examples is LAM MPI [2]). There are two main reasons why MPI interoperability is 

im portant:

•  the functionality provided by MPI cannot and should not be duplicated in Clam;

•  applications which already use M PI may require support from Clam too.

The first implementation of Clam was based on MPI point-to-point communication, 

because of wide popularity and portability of MPI. The interoperability problems arise from 

the fact, tha t in LAM M PI there is only one TCP communication channel which handles 

interprocessor point-to-point communication. The MPI standard [3] suggests tha t MPI 

implementation may use multiple channels. However, no efficient publicly available stable 

M PI implementation exist which would have this feature. Myrinet and out-of-band UDP 

LAM M PI implementations do not have single channel limitation [1], but Myrinet is not
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procO procl

Cannot be received!

M PLSend(...) MPI.Reduce (...)

buffers full!

buffered
M PLSend(...)

bufferedrsrN (...)
M PI.Send(...)

rsrN (...)

F ig u re  2.1: Potential deadlock induced by buffering.

widely available, and out-of-band UDP is very slow and designed primarily for debugging 

purposes. The lack for multi-channel TCP support within MPI can lead to problems with 

buffering in a runtime library which uses MPI for communication.

Figure 2.1 depicts one of the possible deadlock scenarios in a runtime system which 

uses MPI for communication. procO issues a series of one-sided communication operations, 

which eventually result in M P ISends. p roc l, however, does not issue poll operation, and 

the posted sends are buffered by MPI or by the operating system. The MPI collective 

operation, MPI-Reduce, invoked later requires communication over the TCP connection 

which was used previously by MPI-Sends. The buffer space available in LAM MPI may 

not suffice at th a t point to buffer all pending sends initiated by the runtime system and re­

ceive MPI.Reduce send. Hence, communication required by MPI.Reduce cannot complete. 

The communication channels can be freed only after matching receives are posted for the 

buffered sends. This can be done only during polling, since we consider single-threaded 

implementation.
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The Clam design addresses the issue of interoperability in two ways. First, the Clam API 

includes functionality, which allows application to determine the completion of all pending 

communication. Second, the design is taking into account the communication layer porta­

bility. We define the Abstract Communication Interface (ACI) as a component of Clam. 

ACI is the only part of Clam which interacts directly with OS-provided communication 

primitives (MPI, TC P etc). The ACI API provides a small set of operations to enable post­

ing of communication requests. It is sufficient to re-implement ACI in order to port Clam on 

a new communication substrate. Any implementation of the ACI which does not use MPI 

performs all communication via non-MPI communication channels, and thus eliminates the 

possibility of the previously described buffering problem.

2.3 Im plem entation

The architecture of Clam is presented in figure 2.2. Clam is implemented as a set of modules. 

Some of the architecture components are tightly incorporated within the system. Other 

components are interfaced through a set of functions so th a t they can be easily substituted.

Clam is implemented in C. This decision has been made for better portability and to 

achieve better performance. C + +  lacks portability because of differences in implementation 

of the language and STL across different vendors and platforms. It is also quite problematic 

to use a runtime system w ritten in C + +  with applications implemented in C. Clam data 

structures (list and hashtable) are based on implementations from Linux kernel [18]. These 

data  structures are used by ACI implementation and in the main module of Clam.

The memory manager is another shared component of the system. It allows for strict



C H APTER 2. RU NTIM E SY ST E M 12

Clam API

ACI API

ACI

UDP

TCP

MPI

Data structs Memory mgmt

Location mgmt

Req post/process

User handlers <l'

Handler operatior

MO operations

Msg processing

F ig u re  2.2: The architecture of Clam.

checking of memory operations in the debug mode and enables caching of frequently used 

data  structures (greatly simplified version of slab caching [17]). Uncoordinated memory 

management complicates debugging vand does not improve performance. Clam memory 

manager significantly simplifies the process of development and gives slight performance 

gains, which are to be evaluated later.

The communication-dependent part of Clam is hidden within the ACI implementation. 

Again, this addresses the issue of Clam portability. The ACI API can be implemented with 

virtually any subsystem which provides point-to-point communication primitives. All com­
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munication operations result in posting asynchronous communication requests to the ACI. 

The communication is initiated by passing processor ID, communication buffer, and request 

status object to the ACL W hen the requested communication operation is complete, the 

status object is updated to reflect the completion. The two available tested implementations 

of ACI are based on MPI and TCP. In the current implementation, TCP ACI module is 

still using MPI for startup, processor ranking, and internal TCP channel setup. These pro­

cedures can be implemented without MPI. This has not been done in Clam mostly because 

of the convenient startup  and termination functionality provided by LAM MPI.

There are additional benefits from having clear separation of communication-specific 

part of Clam. Some of the applications from the targeted domain communicate large 

amounts of small messages. Such applications can possibly achieve better network uti­

lization communicating through UDP instead of TCP. W ith the separation of ACI, such 

implementation has become possible. However, the complexity of UDP ACI implementa­

tion is much more sophisticated than TCP ACL Also, experience of developers in the area 

shows, tha t very slight performance improvements of communication over UDP are not 

justified by the implementation complexity [6, 7]. The implementation of UDP ACI is left 

as future work.

The functions of the main Clam module provide support for:

• handler registration: mechanisms for address-independent cross-processor handler in­

vocation;

•  mobile object operations: functions for creation, migration and processing of messages 

for mobile objects, FIFO ordering of messages;
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•  synchronization: guarantees tha t only one thread is inside Clam at a time, and pro­

vides mobile object lock during execution of a handler directed to tha t object (while 

locked mobile object cannot migrate);

• A C I request management: maintains queues of incomplete ACI requests and processes 

completed requests.

The mobile pointer functionality has been discussed earlier. Such functionality requires 

support for transparent location-independent message handler invocation. A specific module 

of Clam, the Location Management Module, is performing this function. The location man­

agement module implements a Location Management Policy (LMP), an algorithm, which 

provides location-independent message routing. Location management is the central point 

of research for the second part of this thesis. It was very im portant to make this module 

highly “pluggable” . The location management module is interfacing Clam through the set 

of functions and can be easily swapped (this idea is similar to the way specific filesystem 

is implemented within the Linux kernel VFS [18], but in the current Clam implementation 

the location management module cannot be changed at runtime).

2.4 R elated Work

Clam has been designed and implemented to serve as a new communication layer for the 

PREM A framework. In this section, the previously used implementation of the communi­

cation substrate within PREM A is discussed. For the comprehensive survey of related work 

in the context of other runtime systems the reader is referred to [13].
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Explicit Load Balancing 
Application Code

Implicit Load Balancing 
Library

Mobile Object Layer (MOL)

Data Movement and Control Substrate 
(DMCS)

Adaptive Application

Low-Level Communication Substrate 
e.g. MPI or LAPI

Operating System

F ig u re  2.3: The initial architecture of PREMA.

The PREMA programming model employs SPMD approach, similar to conventional 

MPI-1 [3] applications. The initial architecture of PREMA is shown in figure 2.3. The 

framework included three layers. The D ata Movement and Control Substrate (DMCS) was 

interfacing the low-level communication primitives (MPI or LAPI) and provided one-sided 

communication and RSR functionality. DMCS is described in detail in [15]. The Mobile 

Object Layer (MOL) [22] was implemented on top of the DMCS API. MOL provided global 

address space for the mobile object abstraction (object mobility was previously implemented 

in Smalltalk [16] and Emerald [31]). Mobile object functionality serves as the basis for the 

Implicit Load Balancing Library (ILB), which uses mobile object abstraction to implement 

schedulable objects (SO). A SO is the smallest unit of granularity managed by the ILB. 

Balancing workload among the processors is done by associating SOs with the workload 

units and migrating them  among the processors.

It has been shown, tha t the functionality provided by PREMA helps in achieving good 

application performance [12]. It is also the case tha t application development is greatly 

simplified when PREMA is used. However, we discovered a number of problems in the
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initial design and implementation of PREMA. Most of the problems were identified from 

our experience with applications, using the framework depicted in figure 2.3.

W ith Clam we addressed the problems discovered within the DMCS/MOL implemen­

tation:

• lack of true interoperability with MPI (Clam: communication quiescence procedure 

added, TCP-based implementation available);

• complicated and overloaded API (Clam: API reduced about two times, duplication 

of DMCS functionality within MOL eliminated, simplified semantics of the API);

• “separation of concerns” between DMCS and MOL (Clam: monolithic design);

• use of C + +  reduces portability and interoperability with applications (Clam: imple­

mented in C);

• poor portability due to tight dependency on M PI (Clam: clear separation of commu­

nication module; implementations based both on TCP and MPI are available).

Clam has become a new communication layer of the PREMA framework. The ILB 

module and existing applications, which use it, have been ported on Clam in three days. 

This fact supports the for high ease-of-use and stability of Clam. Performance results 

presented in section 4.2 show, tha t Clam has a number of advantages over the DMCS/MOL 

implementation.
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2.5 Discussion and Future Work

Despite the obvious benefits of the Clam design and implementation, it cannot be considered 

the last step in the evolution of the communication subsystem of PREMA. A number of 

outstanding issues still have to be studied. First, experimental data  show, tha t for some 

application configurations, Clam adds higher overhead compared to DMCS/MOL (about 

10% more). It is the case, th a t DMCS communication uses blocking M PLSend  calls for 

communication. For small messages (less than 64Kb) blocking communication achieves the 

best performance [1]. However, it is known th a t blocking on communication can lead to a 

deadlock [48]. It remains to be seen whether this difference in communication mechanisms 

is the cause of the observed overhead. A thorough profiling has to be completed.

Current Clam implementation does not use additional threads for communication pur­

poses. Advantages of adding such threads to the implementation have to be considered.

The experience with the ILB showed, tha t it is absolutely necessary for load-balancer to 

be able to receive load-balancing utility messages independently and concurrently with the 

application execution [12]. In DMCS/MOL, and currently within Clam, this is achieved by 

synchronizing the runtime system and performing periodic poll in a separate load-balancer 

thread. Load-balancing messages are distinguished from the application messages using 

tags. However, this turned out to be an unsatisfactory solution for applications which 

generate high network traffic. Congestion of the single processor-to-processor communica­

tion channel leads to late arrival of load-balancer messages and thus poor load-balancing 

decisions. In future, we plan to address this issue by providing an API for creation of addi­

tional communication networks (not possible in MPI ACI, but feasible in TCP). This will
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eliminate the channel congestion problem and the existing requirement for message tags.

Garbage collection of destroyed and unused mobile pointers has not been addressed in 

the current implementation. The reason for this is tha t the implementation of distributed 

garbage collection would add a lot to the complexity of the code and to the runtime over­

heads (most of the distributed garbage collection algorithms require additional communica­

tion [41]). For the existing AMR applications which use PREMA, there is no requirement 

for dynamic object destruction. Distributed garbage collection in Clam is left as a future 

work.

Finally, Clam is an open-source project. We plan to prepare release of the source code 

and make this runtime system available to the community in the near future.



Chapter 3

Location M anagem ent Policies

The problem of location management (LM) is relevant in parallel and distributed systems, 

where objects dynamically relocate. Techniques for managing location, i.e., Location Man­

agement Policies (LMP), describe the rules which are used to find objects and the actions 

to be taken when objects migrate to the new locations in the network.

A LMP should provide efficient implementations for move and find  operations on ob­

jects. Efficiency in the context of LMP is defined in term s of (1) communication, (2) 

computation overheads, and (3) response time. However, for the same LMP, it is possible 

th a t optimizations of one operation will deteriorate the performance of another and vise 

versa. This is illustrated by the following two extreme strategies, described in [11]. The 

“full-information” strategy requires up-to-date information about all objects for efficient 

find  operations, but then the cost for performing move is high (all nodes have to be up­

dated). On the other hand the “no-information” strategy does not require location updates. 

Consequently, the find  operation is very expensive, its cost is almost equivalent to a global 

search.

In this thesis we evaluate the impact of location management policies on performance of 

parallel and distributed applications tha t require object migration. Specifically, we evaluate

19
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a number of diverse location management policies within Clam, the runtime system pre­

sented in Chapter 2. The LMPs we evaluate combine existing experience of location man­

agement in Parallel Distributed Computations (PDC), mobile communication networks, 

and mobile agents computing. This evaluation is the first (to the best of our knowledge) 

comprehensive evaluation of LMPs in PDC. One of the objectives of this study is to classify 

existing location management approaches in terms of their impact on the overall perfor­

mance of parallel and distributed com putation applications.

In this chapter we first overview location management in parallel and distributed compu­

tations, mobile communication networks, and mobile agents computing. We do not overview 

location management in the areas, which have significant differences in the model or prob­

lem statem ent compared to location management in Clam (e.g., Distributed Shared Memory 

concerns with replication and consistency models [33]; in Peer-to-Peer systems assignment 

of objects is almost static and the search procedure uses different assumptions [38]). Next 

we describe location management in Clam, the design choices for LMP development, and 

the policies we have implemented and evaluated.

3.1 Overview

3 .1 .1  P a ra lle l D is tr ib u te d  C o m p u ta tio n s

We study location management in the context of the runtime system described in the 

previous chapter. The Clam mobile object model assumes tha t mobile objects represent 

user-defined objects, which correspond to user data. These mobile objects are distributed 

among the processors by the ILB library to  balance the processors’ workload. The task for
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Clam is to  provide efficient routing of messages sent to mobile objects.

Our survey of the related work on location management within those runtime systems 

th a t provide support for object mobility showed, tha t most of such systems use the same 

LM technique. The forwarding addresses technique was first used in DEM OS/M P operating 

systems in the context of process migration [42]. Later it was extended and evaluated by 

Fowler in [27]. In forwarding technique each time an object migrates, it leaves a pointer to 

the new location. Messages sent to the object follow the trail of pointers to reach the object. 

A number of modifications described later in this chapter allow to keep the forwarding chain 

short.

Following are some of the systems, which employ forwarding technique for location man­

agement: Emerald [31] (object-oriented system with fine-grained object mobility support); 

Thor [37] (implements object-oriented database management system); Amber [20] (pro­

vides simplified model for multiprocessor applications). SSP chains [44] (distributed tech­

nique for garbage-collection), MOL [22] (mobile object functionality for load-balancing), 

C harm ++ [36] (framework for dynamic load-balancing).

Another technique for mobile object location management is the centralized directory. It 

is used in A B C ++ which extends object-oriented features of C + +  and provides object mi­

gration support using centralized location database [10]. Few other systems use uncommon 

methods for location management. These systems are usually developed for specific appli­

cations and and hence are not universal. For example the arrow protocol implemented in 

the Aleph toolkit [28] supports exclusive access to objects using directory based on spanning 

tree.

Following are our assumptions about the PDC model relevant to  the development and
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evaluation of the LMPs within this thesis:

• number of nodes involved in the computation is in the order of hundred;

• overdecomposition of the problem: number of objects is in the order of thousand;

• fixed resource allocation; resources are non-faulty;

• all-to-all overlay network;

• possible geographical distribution of the computational resources (network partition­

ing);

• object migration and communication patterns are unpredictable in the general case.

3 .1 .2  M o b ile  C o m m u n ic a tio n  N etw o r k s

During the last years we have been observing constant development of wireless and cellular 

communication technologies. Different kinds of Public Land Mobile Networks are becoming 

more and more ubiquitous. Cellular phones, palm-top computers, laptops with wireless 

network cards, i.e., mobile terminals (MT), are not attached to a single stable physical 

location, but roam around. This creates the need for special techniques to handle such 

movement in order to guarantee communication between MTs. In this section we describe 

standard location management procedures in cellular communication networks and survey 

some of the proposed modifications.

Typical structure of a network infrastructure supporting cellular wireless communication 

is depicted on figure 3.1. The geographical area is divided into location areas (LA) [8]. 

Each LA can contain one or more cells. A mobile support station (MSS) is assigned to
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F ig u re  3.1: Example architecture of a mobile communication network.

every cell to handle all network traffic directed from a M T located within the cell. Up in 

the hierarchy a mobile switching center (MSC) governs one or more LAs and maintains a 

database with MTs locations. Multiple MSCs are connected together by a fixed backbone 

and/or intelligent network through a number of signal transfer points (STPs).

In cellular networks mobile users are tracked using two-tier scheme [8,40] (as defined 

in IS-41 [25] and GSM [26] standards). A location database, called Home Location Register 

(HLR), is predefined for each MT. Another database, a visitor location register (VLR), 

is associated with one or more LAs (see figure 3.1). Two procedures, governed by the 

standard, define what happens when MT moves from one LA to a different one, and how 

a call recipient can be found. Following is the brief description of location procedures as 

implemented in the current mobile networks.

There are two possible scenarios when a MT moves from one coverage area to another. 

If the new area shares the local database (VLR) with the original one, tha t VLR is simply 

updated with the new location of a user. If VLRs are different, home registry has to be
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updated with the user’s new location. The MT requests to remove its record from the old 

VLR and registers with the new one.

If there is a need to locate a particular MT when another MT makes a call from some 

cell, the request is first sent to the local VLR of the caller. No further actions are required 

if tha t VLR possesses information about the recipient’s location. Otherwise, a query is 

propagated to the callee’s HLR. The up-to-date location information (which HLR always 

has) is sent back to the caller’s support station. The support station covers the whole 

location area consisting of multiple cells. The actual cell where the recipient is located is 

determined by polling, or paging, within the LA. The search request is broadcast to all cells 

of the LA, and the recipient reports its location cell upon receiving this request. At that 

point connection between the two MTs is finally established.

Most of the research about location management in Mobile Communication Networks 

has been concerned with the costs of updating the HLR. Some studies were trying to 

keep and improve the centralized nature of the scheme, while others were attem pting to 

distribute the process of location. Interestingly enough, all of the described techniques are 

just proposals. They have been evaluated using theoretical analysis, simulations and traces, 

but none is a part of the existing standards.

The nature of mobile network communication is usually unpredictable, but the infras­

tructure should support any particular pattern  [49]. Schemes th a t can adapt to the com­

munication and migration characteristics of MTs are advantageous. In [30] Jain proposes 

to keep a cache at each VLR. When a home database is queried for a specific MT, the 

response is stored locally, so th a t the subsequent call to the same MT may not require 

communication with the HLR. It has been shown, tha t if CMR is high, caching performs
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very well.

Another proposed improvement is based on user profile replication. A profile represents 

the set of mobile users, whose location information is always kept up-to-date at the local 

VLR. This enables quick location of the most “popular” users. Different approaches to 

profile replication are discussed in [43,46].

Forwarding technique eliminates the update operation by keeping a pointer to the new 

location of a migrated MT at the source LA VLR [29]. When a request to locate tha t MT 

arrives, it will be forwarded to tha t new location. Forwarding techniques decrease the load 

on HLR, but have high overheads if forwarding chains become long. The study described 

in [29] shows, th a t if Call-to-Mobility Ratio (CMR, the number of calls issued to the user 

over the number of times it changes location) is lower than 0.5 and forwarding chains are 

at most 5 hops long, forwarding reduces user location costs network overheads by 20-60%.

A conceptually different approach uses distributed database architecture [8] instead of 

a centralized HLR. This technique takes advantage of the fact, tha t in most cases back­

bone/intelligent network architecture has hierarchical tree structure. This allows to dis­

tribute the load of location management among the non-leaf nodes of the tree. Different 

hierarchical approaches are described in [34,40].

Partitioning of the coverage area into zones, among which MT moves infrequently, 

is yet another modification which reduces the number of LSs and query time for certain 

call/m igration patterns. A partition consists of location areas, which are represented by the 

dedicated location server. T hat representative LS is not aware of the exact MT location, 

but knows its current partition. This technique reduces update-induced communication.

Summarizing, hierarchical location schemes eliminate the need for centralized HLR at
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the cost of increased general complexity of location management and increased storage 

requirements at the intermediate LSs. Hierarchical techniques support locality of commu­

nication and migration of MTs.

Compared with LM in PDC, mobile network systems have a number of distinct proper­

ties. In PDC a local location directory is associated with each processor. This directory is 

analogous to VLR in combination with supporting stations, which communicate with MTs 

local to a location area. However, in PDC location directory is always aware of all the 

objects local to the process address space. This eliminates requirement for paging. In PDC 

applications, similarly to MNC, communication and migration patterns are not predictable 

in general case. At the same time, in MNC the migration options for a MT are limited by 

neighboring areas, while in PDC object can migrate to  any of the processors regardless of 

their geographical location. Of course, PDC application do not include unpredictability of 

human character, present in cellular phone networks. Another difference of PDC is the time 

required for a mobile object to change its location. In MNC there are strict limitations on 

maximum travel speed for cellular phone users; the sizes of communication cells are also 

predefined [39]. PDC applications can possibly move hundreds of objects in few seconds 

between geographically distant locations.

There are also differences in the system architecture. Mobile networks in most cases 

have hierarchical structure. There can be dedicated location servers on non-leaf nodes of 

the hierarchy. In PDC applications computation is done either on a COW, or a collection 

of clusters. All nodes have equal functions, and the application can rarely take advantage 

of the underlying network routing, as it is handled by the low-level protocols.

The PDC model assumes fine-grained object mobility. The number of objects may be
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large. We argue though, tha t the number of objects in mobile communication networks, 

e.g., in cellular networks, is generally much higher (hundreds of millions). This puts certain 

size and memory limitations on MNC LM algorithms.

3 .1 .3  M o b ile  A g e n ts  C o m p u tin g

Mobile agent computing is a relatively new area of distributed computing, which is gaining 

more popularity with the development and growth of the Internet. Mobile agent (MA) is 

an independent piece of code and data. It can be taken from the execution context on one 

host, migrated to a different machine, and continue execution there after migration com­

pletes. Recent progress in developing platform-independent environments (e.g., Java Virtual 

Machine) addressed many technical difficulties, inherent to the implementation of mobile 

agents, which also contributed to the growing popularity of the model. The spectrum of 

applications, which can take advantage of mobile agents, includes e-commerce, distributed 

collaboration environments, information search and dissemination, network management 

and monitoring [35]. Some of the MA applications require support for communication be­

tween the agents [19]. In such cases location management techniques play very im portant 

role [49]. Nevertheless, being im portant, location management is not the major research is­

sue in mobile agent computing: the main challenges in MA systems are support for mobility, 

security, naming services and fault-tolerance [32].

Home server location algorithm associates a specific host with each mobile agent. Every 

time a mobile agent changes its location, home server is updated with the new location. 

A message addressed to the mobile agent is sent to its home server, which forwards tha t 

message to the agent. A janta [47] implements two-tier home-based location management
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scheme, similar to the one used in cellular communication. A number of modifications of 

the centralized scheme exist [49]. For example, the server can be queried for the current 

location of the destination agent. The answer to the query can then be used to send the 

message directly. This scheme is called query server. It is also possible to have a single 

dedicated host, central forwarding server, to  keep location information about all agents.

The disadvantages of the centralized scheme are high load on the database host and its 

network links, possibly high storage requirements, single point of failure, poor scalability. 

Nevertheless, it gives good average for the number of hops a message has to travel to reach 

the object. In applications with the small number of agents or low communication rate this 

approach can be beneficial.

The forwarding technique can also be used for locating mobile agents. Voyager plat­

form [5] uses forwarding pointers in combination with home server for agent location. Prob­

lems with forwarding pointers include possibly long chains of forwarders and low resistance 

to failure.

Home-server and forwarding are the most popular location management methods in 

mobile agent computing. Alouf et al [9] compared these two schemes. Markovian analysis 

and experimental results show tha t centralized server performs better than forwarders on a 

LAN, but not on a wide-area network. O ther approaches to locating agents in MA systems 

include broadcast and hierarchy of the location servers.

Cao et al summarize experience with mobile agents location management by introducing 

the concept of mailbox in [19]. The authors generalize most of the existing approaches and 

introduce new classes of location protocols. A mailbox which buffers incoming messages is 

associated with each mobile agent. The mailbox serves as a mediator in communication



CH APTER 3. LO C ATIO N  M A N A G E M E N T POLICIES 29

y, Migration frequency

< > PS (Push)

< > PL (Pull)

JM (Jump) x, Delivery

NS (No) NM (No) FM (Full)

z, Synchronization

F ig u re  3.2: Design space for MA communication protocols (Cao et al, [19]).

with the mobile agent. Logically, the mailbox is a part of the mobile agent, but it can be 

detached from the agent. Therefore, it is not required th a t the agent and its mailbox are 

located on the same host. Using this idea, classification of the inter-agent communication 

algorithms is done along the three dimensions, as shown in figure 3.2.

Dimension x defines the frequency of mailbox migration. Decisions about migrating 

the mailbox are made dynamically with Jum p Migration, and with Full Migration mailbox 

always migrates together with the agent. Axis y determines the agent-mailbox interaction. 

Either mailbox is responsible for forwarding incoming messages to the agent (push), or 

the agent periodically queries its mailbox for available “mail” (pull). Finally, dimension z 

identifies options in synchronization in order to  achieve better communication reliability. 

If synchronization takes place, the moving object (mobile agent or mailbox) synchronizes 

with the stationary object (mailbox or host) to prevent message loss during the process of 

migration. Synchronization can be partial (host with migrating mailbox (SHM) or migrating 

agent with its mailbox (SMA)) or full (combination of SHM and SMA).

Combinations of the classification param eters creates a variety of protocols. In such a
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taxonomy each protocol is defined by the string of format X X -Y Y -Z Z  with its components 

chosen from each of the axes. A particular algorithm should be chosen according to the 

requirements of an application. N M -P S-*  class of protocols corresponds to the home-based 

technique. Essentially, stationary mailbox represents forwarding server. JM -*-*  and FM - 

*-* generalize forwarding pointer protocols with and without forwarding chain shortcutting 

respectively.

Mobile agents application model has certain properties, which make it quite different 

from mobile network communication model and from PDC. For certain applications, mi­

gration and communication patterns of a mobile agent can be known in advance [49]. This 

almost never holds for mobile networks. Mobile agents are usually designed to operate on 

a wide area network, most likely, on the Internet. Such environments consist of millions 

of possible locations for an agent. Moreover, mobile agents applications are much more 

dynamic than, for example, cellular phone networks. The number of mobile agents for an 

application may vary and change during its runtime. Hundreds of agents can possibly be 

created and destroyed in seconds. Mobile agents do not operate on a fixed predefined set of 

hosts. The number of locations mobile agents operating on the Internet can visit is bounded 

only by the number of on-line hosts supporting the platform of the mobile agent.

One more im portant difference of PDC model is in the assumptions about communi­

cation. The reliability of communication provided to an application in PDC is usually 

implemented by the lower levels of the system. One-sided communication abstraction pro­

vided by Clam is reliable. Messages sent to mobile objects are also guaranteed to arrive in 

FIFO order. The MA communication may not be reliable. This is why synchronization is 

considered as a part of MA location management.



CH APTER 3. LO C ATIO N  M AN A G EM E N T POLICIES  31

3.2 Location M anagem ent in Clam

A Location Management Policy (LMP) in Clam defines rules for performing three opera­

tions: update, search, and search-update. The update operation takes place when an object 

migrates from one processor to another. The search operation specifies how a message to 

a non-local mobile object can be delivered. The search-update defines the procedure of 

updating location information of selected processors after the message was delivered to  an 

object.

The location directory is a distributed data  structure managed by a LMP. It maps an 

object onto the possible or exact location of tha t object. Some techniques may use a set 

of possible locations [40], but they are outside the scope of this thesis. Such approaches 

can be beneficial in applications where object migration is localized within group of nodes. 

This is not the case in general for load-balancing. The development of customized LMPs 

for a specific load-balancing algorithm has not been addressed in this work.

The location management design space is shown in figure 3.3. Each axis represents a 

LMP operation and the corresponding options arranged in the order of increasing complex­

ity. Migration of an object to a new location may result in one of the four possible update 

scenarios:

•  no update (no communication);

• update of the local directory (no communication);

• update of location directories at selected sites;

•  update of directories at all processors (broadcast).
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F ig u re  3.3: Design space for location management policies development.

It is not feasible to maintain exact location of an object at all processor directories. 

This would require global synchronization of the system before each object migration. We 

do not consider this as a possible solution because of high overheads. That is why the 

location information stored at a local directory can often be outdated, regardless of the 

update technique used. Therefore, the local directory information is nothing more than a 

location guess which was correct at some point in the past. A message directed to an object 

results in a point-to-point message sent to a processor, where th a t object can possibly reside. 

If the guess was wrong, tha t message will trigger another point-to-point message, i.e., the 

message will be forwarded. Thus, the search operation is essentially a process of routing 

the message toward the processor where the searched object is located. We distinguish four
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general options for implementing the search operation. They differ by the choice of the 

recipient (s) for the initial search message:

• the recipient is chosen randomly;

•  the recipient is chosen using the guess from the local directory;

• the message is sent to a predefined processor;

• the message is sent to all of the processors (broadcast).

All of the search methods can also send queries to the corresponding locations instead 

of sending actual messages. This could decrease forwarding traffic in some applications, 

but the pending outgoing messages would have to be queued on the source processor until 

the reply arrives. However, when the reply does arrive, it may already be outdated, i.e., 

querying decreases forwarding overheads at the cost of increasing the likelihood of location 

information being invalid. Query-based search strategies are not evaluated in this study. 

Querying is likely to perform badly for applications with intensive communication and 

object migration while introducing significant complications into the implementation of the 

LMP.

Search-update is an optional procedure in a LMP. Its purpose is to reduce the length 

of the forwarding pointers chain. If search-update procedure is present in a LMP, it can 

update either some of the processors in the system or update all of the processors. The idea 

behind the search-update operation is similar to caching in cellular networks. It is based on 

the assumption, tha t if a message was sent to an object, it is likely another message will be 

sent to it again. Search-update attem pts to  reduce the cost of subsequent object searches.
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In PDC the cost of subsequent messages to an object would be reduced if those message 

travel shorter path than the previously sent messages to the same object from the same 

processor. This improvement is achieved by updating the location directory of the initia­

tor processor with the newer object location guess. The update procedure will result in 

shortening of the forwarding pointers chain. The difference from cellular networks is tha t in 

distributed computing it is possible to  have a directory entry for each object in the system 

(unlimited cache). In MNC model this may not be feasible because of the large number 

of MTs. Different search-update strategies have been presented and evaluated in [27] by 

Fowler.

A location management policy implemented within Clam should:

• minimize the length of the path for forwarded messages;

• minimize additional communication;

•  balance location management “duties” among the processors;

• minimize computation overheads of the LMP operations.

Different LMPs pursue different trade-offs of the listed requirements. As it is shown 

later in this thesis, the application performance may heavily depend on the choice of LMP 

based on the application properties (intensity of the object communication and migration, 

in particular).

Seven location management policies have been implemented within Clam for the pur­

poses of this evaluation. The selection of policies was affected by a number of factors. First, 

the policies which are commonly used in PDC had to  be evaluated. Second, the selected
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LMP Update Search Search-update
Lazy Forwarding (LF) no local guess no
Jump Update (JU) no local guess yes, selective
Path  Compression (PC) no local guess yes, selective
Broadcast Update (BU) yes, all local guess no
Partition Update (PU) yes, selective local guess no
Eager Update (EU) yes, selective local guess no
Home-Based (HB) yes, selective home processor of 

the object
no

F ig u re  3.4: Summary of the implemented location management policies.

policies should be appropriate within the PDC model. Third, we attem pted to use some 

of the ideas collected from surveying location management methods in the relevant areas. 

Following is the description of the implemented LMPs, which is also summarized in table 3.4 

with respect to previously discussed LMP operations.

It is im portant to note, tha t each mobile pointer in Clam contains a processor ID where 

th a t pointer was originally created. In the absence of any information about the mobile 

pointer in the directory of a processor, the origin processor of a mobile pointer is used as 

the best location guess.

Lazy Forwarding (LF) is the simplest forwarding protocol. Messages to objects are 

routed following forwarding pointer addresses stored in the local directory. When an object 

moves, only the local directory is updated. Forwarding has low migration cost. The main 

disadvantage of LF LMP is tha t the length of forwarding chain is bounded by the number 

of processors only.

Jum p U p d ate (JU ) is similar to LF, but when a message reaches the object, an 

update message is sent back to  the processor from where the message is originated. This 

is similar to caching in mobile networks. The cost of subsequent message to the object is
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reduced by at least one hop.

P ath  C om pression (P C ) differs from JU tha t the update message is propagated to 

all processor in the forwarding pointers trail.

B roadcast U pd ate  (B U ): the new location of an object is broadcast each time the 

object migrates. Search proceeds the same way as in LF, by forwarding.

P artitioned  U p d ate  (P U ): differs from BU by updating only selected locations when 

an object moves. The idea of partition-based location management originates from MNC, 

although we implemented a different algorithm not based on tree hierarchy. The motivation 

behind this protocol is to address the issue of slow network links. We assume the partitioning 

of nodes in sub-clusters. Nodes within a sub-cluster are connected with high capacity 

links, while inter-subcluster connections are slow. When an object moves, a new location 

is broadcast to all the nodes within the sub-cluster. If the new location node is in a 

different sub-cluster, the object location is broadcast within tha t sub-cluster upon object 

arrival. Search procedure is done using forwarding. PU LMP attem pts to minimize update 

traffic over the slow connection. Search-update updates the source processor with the new 

location, if the message was forwarded. The update is broadcast within the partition of 

th a t processor/

Eager U p d ate  (EU ) uses the idea of profile replication, briefly described in Sec­

tion 3.1.2. Each time a message arrives to the object, the sender processor is added to the 

profile of tha t object. This profile accumulates information about processors “interested” 

in communication with the object. W hen an object migrates, all of the processors from the 

list are updated with the new location, and the list is reset. Updates in EU LMP are more 

“intelligent” than in BU LMP.
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H o m e-B ased  (H B ): each mobile pointer in Clam contains an ID of the processor 

where tha t pointer was created. We call this processor “home” of the mobile object. When 

a message is issued to an object and the object is not local, the message will be sent to the 

“home” node. The directory of the “home” node is updated with the new object location 

after every migration, so tha t it can route incoming messages to the object.

Figures 3.5-3.10 illustrate how the selected LMPs manage the distributed location di­

rectory. We consider the system consisting of five processors and one mobile object. We 

assume tha t the object has been created on processor 0. Solid arrows show the location 

information on each of the processors for th a t object. The figures depict snapshots of di­

rectories after each of the actions in the sequence: (1) object moves from 0 to 1; (2) object 

moves from 1 to 2; (3) processor 4 sends a message to the object; (4) object moves from 

2 to 3. In these examples we do not take into account concurrency: all messaging activity 

from the previous step is completed before proceeding to the next step.

JU LMP is the most common technique for location management in PDC run-time 

systems listed in Section 3.1.1. HB LMP is also used in some of the implementations. 

Complexity of LF, JU and PC LMPs was studied in [27]. To the best of our knowledge, 

there is no mobile object run-time environment which would provide a choice of LMP to the 

application. We are also not aware of any work which would evaluate and compare these 

LMPs.
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F ig u r e  3.5: Lazy Forwarding LMP.

F ig u re  3.6: Jump Update LMP.

F ig u re  3.7: Path Compression LMP.

F ig u r e  3.8: Broadcast Update LMP.

F ig u r e  3.9: Home-Based LMP.

F ig u r e  3.10: Eager Update LMP.



Chapter 4

Evaluation

This chapter is structured as follows. First we evaluate the performance of Clam in terms 

of absolute overheads it introduces and how it compares with the previous implementation 

of PREM A communication layer. The second part of the evaluation describes the series of 

tests which compare the performance of the selected LMPs with respect to their impact on 

the performance of the two benchmarks we describe in this chapter. We conclude with the 

analysis of the collected performance data.

4.1 Experim ental Environm ent

4 .1 .1  H ard w are  P la tfo r m s

The prim ary testing environment we used in our experiments was SciClone Cluster of The 

College of William and Mary [4]1. The architecture of SciClone is heterogeneous. It fea­

tures different types of processor configurations and various networks (Fast Ethernet, Gi­

gabit Ethernet, Myrinet). The detailed description of SciClone can be found in [4]. Most

1 Computational facilities of SciClone Cluster were enabled by grants from Sun Microsystems, the National 
Science Foundation, and Virginia’s Commonwealth Technology Research Fund.

39
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F ig u re  4.1: Simplified configuration of the CS Network Testbed.

of the SciClone nodes support more than one network interface. In our experiments all 

communication was done via Fast Ethernet interconnect.

The Computer Science Network Testbed2 is a subsystem of switches connecting 32 

lower nodes of SciClone Typhoon subcluster through a separate network interface. The 

testbed has been designed for experiments with various network parameters. WAN can be 

simulated by adjusting hardware settings on the network switches and changing parameters 

of the routing software. The simplified architecture of the testbed is depicted in figure 4.1. 

We simulated wide-area network environment by locking bandwidth of the s i- lr l  and s2- 

Irl (see figure 4.1) links to 10 Mbps on the s i  and s2 switches and keeping 100 Mbps 

bandwidth for the communication between nodes connected to the same switch (hereon we 

call this configuration 10/100 configuration).

2The Network Testbed is designed and maintained by the group of Dr. Bruce Lowekamp at the College 
of William and Mary.
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F ig u r e  4.2: Sorting network for eight inputs.

4 .1 .2  B en ch m a rk s

4.1 .2 .1  Synthetic  M icrobenchm ark

Parallel network sort benchmark, which we call netsort4 for historical reasons, implements 

a sorting network3. Sorting network is a comparison network which specifies a sequence of 

comparisons for its inputs to  produce a sorted sequence. The details behind sorting networks 

are discussed in detail in [23]. The process of sorting a sequence of eight numbers using 

sorting network is illustrated in figure 4.2. Through a series of comparisons and exchanges, 

the input sequence i transforms into the sorted sequence s. For input line iO this results 

in comparison with lines 1, 3, 1, 7, 2 and 1. Each of the shaded regions corresponds to a 

stage. All comparisons within the stage can be done concurrently. A sorting network of 

such structure can sort an input sequence of n numbers in 0 (lg 2n) time [23]. In the rest 

of this section we concentrate on the details of the netsort implementation.

It is im portant to note, tha t netsort4 benchmark has been developed with the purpose

The netsort4 benchmark was originally implemented by Chris Hawblitzel.
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typedef struct sortnode_t { 
int id;
int stage;
int value[DEPTH+1] ;
mobile_ptr_t partner[DEPTH]; 
int partner_value[DEPTH+1];
int partner_ready[DEPTH+1];
int partner.id[DEPTH] ;

} sortnode.t;
F ig u re  4.3: netsort sortnode structure.

of simulating communication intensive tightly-coupled application. The benchmark was not 

designed to achieve high performance and speedups of sorting.

Description of the netsortJf. benchmark follows. A sortnode is created for each element 

of the input sequence of size n. Sortnode is described by struct presented in figure 4.3. 

A Clam mobile pointer is created for each sortnode. During the setup procedure, sortn- 

odes are created and initialized. Sortnodes are assigned ids from 0 to n, which do not 

change throughout the execution. The stage field is initialized to 0, and corresponds to 

the current stage of the algorithm for th a t sortnode. DEPTH is defined as the maximum 

stage for a problem instance. The value array contains values assigned to a sortnode on 

each of the stages. Initially the value [0] field is assigned an input sequence element. The 

array of Clam mobile pointers partner describes comparison sortnodes at each stage. The 

partner.value contains values of partner sortnodes, and the non-zero value of the zth el­

ement in partner.ready tells tha t the zth partner sortnode has reached the stage i. The 

partner.id keeps the id of the zth partner sortnode.

The benchmark is initiated by sending a start message to each of the sortnodes from 

processor 0. All other processors except 0 are polling for incoming messages until the
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finish-handier signals completion. Upon the arrival of start message a sortnode sends 

receive-value message to its partner sortnode on the first stage. That message includes the 

stage of the sortnode and its value at tha t stage. The receive-value handler checks whether 

the recipient sortnode reached the same stage as the stage specified in the message. If it 

did, the current sortnode value is compared with the value included in the message and is 

modified if necessary to min  or max of the two depending on the id  of the current partner, 

i.e., if it is numerically greater or smaller than its own id . The s ta g e  value is incremented, 

and the sortnode sends receive-value message to the next partner as described above.

The receive-value messages can reach a sortnode out-of-order. If the receive-value mes­

sage from the zth partner arrives before the message from the (i-1) th  partner, the s ta g e  

value included in the message is greater than  the stage of the recipient sortnode. In this 

case corresponding p a r tn e r_ v a l is assigned the sent value, and p a rtn e r_ read y  is set to 1. 

The receive-value handler will make comparisons for stages i and (i-1) when receivejualue 

message from partner (i-1) arrives. The algorithm finishes when all sortnodes reach the 

stage value of DEPTH.

A slightly modified version of the netsortf benchmark, netsort5 , works the same way 

as netsort4 , but the creation of sortnodes, and thus mobile pointers, is evenly distributed 

among the processors. It has been described in the previous chapter, tha t in Clam the 

processor where a mobile pointer was created is designated as home of the mobile pointer.

In order to study the effects of LMPs, after the completion of each stage a sortnode is 

migrated to a randomly assigned processor. The benchmark allows to increase access-to- 

mobility ratio by changing the frequency of object migrations. Another parameter of the 

benchmark is the message payload size.
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F ig u re  4.4: Example of inserting a boundary point in PCDT.

netsort is a tightly coupled and communication intensive benchmark. We believe, that 

some of the applications from AMR domain have similar communication properties.

4.1 .2 .2  P C D T  E nd-to-E nd  A pplication

Parallel Constrained Delaunay Triangulation (PCDT) is a parallel mesh generation algo­

rithm  based on Delaunay triangulation [45]. The reader is referred to [21] for the detailed 

description of the algorithm and for the definition of related terms.

The main difference of the PCD T algorithm from Delaunay triangulation is tha t the 

point cavity cannot expand across the predefined boundary. At the preprocessing stage of 

PCDT, the problem is divided into a number of subdomains satisfying certain boundary 

properties. Each subdomain can then be triangulated almost independently on separate 

processors. The process of subdomain triangulation consists of selecting and changing 

“bad” triangles (i.e., those, which do not satisfy certain geometric requirements) from the 

initial triangulation. The recalculation of the subdomain mesh can lead to modifications of
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the edges located on the subdomain boundary. When a new point has to be inserted on the 

boundary, a “split” message is sent to the neighboring subdomain located on some remote 

processor. The described process is depicted in figure 4.44.

An implementation of PCDT decomposes the initial domain and distributes resulting 

subdomains among the processors, which mesh the subdomains concurrently. We consider 

PCD T as a part of the end-to-end iterative application, where the requirements for a par­

ticular subdomain (and thus complexity of its processing) can dynamically change. In such 

application, meshing is just one of the steps in the computation. The resulting mesh is 

used by parallel Finite Element Methods (FEM) solvers. The subsequent mesh refinement 

or coarsening depends on the error estimators in the case of parallel FEM solvers. Static 

assignment of subdomains to processors would lead to unequal load, thus dynamic load- 

balancing is required.

The end-to-end PCDT benchmark simulates a real end-to-end application. It approxi­

mates the mesh generation phase of an adaptive FEM solver. The data collected from the 

single-iteration PCD T application5 was used to estimate times for subdomain refinement, 

number and size of “split”-initiated messages, and sizes of the subdomains before and after 

refinement. The input parameters for the benchmark are number of iterations / ,  percentage 

of subdomains to be refined or derefined on each iteration R , and the level of aggregation 

of “split” messages A  (aggregating multiple “split” points into a single message improves 

network utilization). The number of subdomains is fixed to 512.

The ILB layer of PREMA provides dynamic load-balancing within the PCDT bench­

4Figure 4.4 is a courtesy of Brian Holinka.
5We used single-iteration PCDT application developed by Andrey Chernikov.
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mark. The complete coverage of the algorithms used in ILB and its implementation can be 

found in [12-14]. We used work-stealing load-balancer for all the experiments.

R  x 512 subdomains are chosen at each iteration of the benchmark. These subdomains 

are refined or derefined (these operations are assumed to have similar complexity). The load- 

balancer has to redistribute subdomains according to dynamically changing load. Other 

subdomains are not involved in the refinement. The processed subdomains may however 

result in “split” messages sent to  neighboring subdomains. These are the mobile object 

messages handled and routed by the Clam location management module.

4.2 Performance Evaluation of the Runtim e System

We conducted a series of tests both to compare Clam with the DMCS/MOL implementa­

tion and to  measure the absolute overheads. The first test measures maximum achieved 

bandwidth over the 100 Mbps Fast Ethernet link using ping-pong method. In this test 

Clam remote service request functionality is used to invoke remote function with the buffer 

of variable size as an argument. The Clam-achieved bandwidth is measured for TC P and 

M PI implementations of ACI. Similar test is done for DMCS, MOL and pure MPI. The 

results for small and large message sizes are plotted in figure 4.5.

The results of the ping-pong test show, tha t in almost all cases Clam achieves better 

bandwidth than DMCS and MOL. For small message sizes, LAM MPI performs best. In the 

case of large messages, Clam implemented on top of TCP ACI gives the best performance. 

This is happening mostly because for large messages LAM MPI is using three-way handshake 

protocol. The performance gain of Clam over the similar MOL functionality is over 20%.



CH APTER 4. EVALU ATIO N 47

5000020000 30000 60000 70000
message size, bytes

i

message size, bytes

F ig u re  4.5: Maximum achieved bandwidth for small and large message sizes.

The poor performance of the MOL in this test is explained by the DMCS/MOL separation, 

which requires an additional memory copy. Both MPI and TC P implementations of Clam 

give better performance results than DMCS.

The second test was designed to compare the performance of the mobile message func­

tionality of Clam vs MOL. In this test a single object is created on processor 0. This object 

is first migrated to processor 1, and a mobile message is sent to th a t object from processor 

0. When the message is received, a reply RSR is invoked on processor 0 from the processor 

where the object is located. The latency measured in this test is defined as the time from 

sending a message to receiving the reply. Next the object migrates to processor 2, and the 

procedure is repeated. Lazy Forwarding location management policy is used, so when the 

object is located on processor 2, each message sent to it from 0 traverses through processor 

1 to 2. The results of the test are presented in figure 4.6.

The mobile object message latency test demonstrates tha t (1) Clam has better overall 

performance, and (2) the per-hop overhead is about constant when Clam is used while it is 

increasing for MOL.

The last two performance tests evaluate the overall effectiveness of Clam. Figure 4.7
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F ig u re  4.6: Mobile object message latency test.

plots run times of the netsort benchmark for Clam and MOL implementations. For small 

processor configurations MOL-based implementation performs better. However, Clam out­

performs MOL when more than 8 processors are used, and the difference is increasing when 

we scale the size further. Clam is more scalable because of the non-blocking communication 

algorithms used.

Finally, figure 4.8 plots runtime breakdown for the Parallel Constrained Delaunay Tri- 

angulation (PCDT) application which is using PREMA load-balancing functionality imple­

mented with Clam (in this test we had 512 subdomains of the 2-D pipe model, the algorithm 

generated about 35 million triangles, the subdomains were assigned area bounds between 

1.92e-2 and 0.26e-2; the test ran on 32 nodes of the Whirlwind subcluster of SciClone). 

The plot shows, th a t the overhead introduced by Clam is within 5% of the to tal execution 

time. The communication component of the execution time for no-balancing test is caused 

by continuous polling in absence of work.
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F ig u r e  4.7: netsort4 benchmark performance.

4.3 Evaluation of the Location M anagem ent Policies

In order to evaluate the LMPs described in section 3.2, we first ran netsort4 and netsort5 

benchmarks on a different number of nodes within the SciClone cluster using different 

location policies. For configurations of up to 64 processors we used the Typhoon subcluster 

with one process running on each node. 128-processor experiment was ran using all the 

nodes of the Whirlwind, Typhoon and Tornado subclusters. We ran the benchmark with 

4096 random numbers to  sort (78 stages). All message and sortnodes were appended with 

the payload of 10 Kbytes. We used MPI ACI for all of the experiments since MPI ACI 

showed better performance for small messages. The directory updates use small messages 

and overall most of the messages in our benchmarks are less than 64 Kbytes.

The total execution times of the netsort4 and netsortS benchmarks using different LMPs 

are plotted in figures 4.9 and 4.10 respectively. PU LMP is not present on the plots, because 

it was designed specifically for the partitioned testbed configuration of 32 processors only.
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F ig u re  4.8: PCDT runtime breakdown without load-balancing and with PREM A diffusion load- 
balancing.

This experiment evaluates the impact of LMP on the application performance. Results 

show, tha t the total runtime grows when we increase the configuration for all of the policies. 

JU and EU LMPs give the best results, while HB and BU LMPs are the worst.

There is a number of LMP properties which affect the overall performance of a com­

munication intensive mobile object application. The requirements for an efficient LMP are 

listed in section 3.2. Figures 4.11, 4.12 and 4.13 help explaining the performance results.

Figures 4.11 and 4.12 show the distribution of the number of hops application messages 

had to travel for the netsort4 test. BU LMP for this application guarantees the shortest 

path. Apparently, most of the directory updates arrive in time so tha t the subsequent 

messages are delivered in one hop. HB LMP also gives very good distribution: most of the 

messages reach destination in two hops, and almost no messages take more than four hops. 

Messages travel longer paths as intensity of updates decreases from PC to JU and to no 

updates in LF LMP. While for LF the maximum number of hops is 26, for PC it is 13.

However, the data  from the message hop distribution (i.e., figures 4.11 and 4.12) are not 

sufficient to  explain the relative performance of the LMPs. For example, although HB LMP

6
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F ig u re  4.9: Execution times of netsort4-

provides the shortest travel distance, it has very bad performance overall. Figure 4.13 gives 

the breakdown of internal Clam messages into three types. Application messages are initial 

messages sent to an object as a result of mobile object message function invocation. These 

messages may result in a sequence of forwardings, until they finally reach the processor 

where the targeted object is located (forwarding messages). After tha t an LMP may send 

one or more update messages, which are also included into the breakdown.

It can be seen from figure 4.13 tha t processor 0 performs more communication than 

any other processor regardless of the LMP used. Application can always send a message 

to an object using its mobile pointer. At the time a processor posts a message, its local 

directory may not have any information about the target object. In this case, any LMP 

within Clam will use the internal mobile pointer information to determine the target of the 

initial message. Each mobile pointer in Clam includes the ID of the processor, where the 

mobile pointer/object was created. This is the “home” processor of the mobile pointer,
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F ig u re  4.10: Execution times of netsort5.

and it will be used as the “best location guess” . In netsortJ^ we have 4096 objects evenly- 

distributed among the processors during the initialization stage. All objects have the same 

“home” -  processor 0, where they were created. Obviously, when a message is sent to an 

object for the first time from a specific processor, it will be sent to processor 0. If the 

to tal number of processors is n, P P  objects are local to each of the processors. The rest 

(4096 — p p )  objects are non-local, and the best guess for those objects is the “home” 

processor 0. Hence, the probability of a message to be sent to processor 0 during the first 

stage Pi can be defined as

4096 -4096 1
p   __________n   i__ _

1 4096 n

During each of the subsequent stages each of the sortnodes will be assigned randomly 

to  some new processor. Thus, the total number of the objects, which are known to the 

directory of a specific processor can increase at most by p p  (if all of the newly arrived
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F ig u re  4.11: Number of hops for a message to reach the object; netsort4, 32 processors, 

objects were not known at the previous stage). Given an algorithm stage z, the probability 

Pi of a message being sent to “home” processor 0 can be defined as

0 if i > n
1 — ^ if i < n

Apparently, for fixed problem size, the probability of sending a message to processor 0 is 

growing as we increase the number of processors.

Figure 4.13 supports the observation th a t communication on processor 0 is the limiting 

factor of the benchmark performance. The forwarding messages are significantly more 

expensive than the update messages (10 Kbytes vs about 100 bytes). T hat is why HB and 

LF with the high amount of forwarded messages do not perform well. We also see that 

although JU and PC decrease the amount of forwarded messages, they fail to improve the 

application performance much because of the existing bottleneck.

A sortnode is migrated to a different processor after each comparison in netsort.4 . Also, 

each comparison is a result of receive.val message arriving to the object. Most of the time

a—o Lazy Forwarding 
□—□ Jump Update 
♦—* Path Compression 
a — a  Broadcast Update 
•— * Home-Based 

Eager Update



C H APTER 4. EVALU ATIO N 54

o—o Lazy Forwarding 
□—□ Jump Update 
♦—* Path Compression 
a—* Broadcast Update 
*— • Home-Based 
*--« Eager Update

250 k

200 k

o 150 k

100 k

50 k

number of hops

F ig u re  4 .12: Number of hops for a message to reach the object; netsort4 , 64 processors.

an object migrates after it receives a message. Because of this, JU and EU LMPs have 

roughly the same performance, and their effect of update is the same.

The performance of HB LMP does not change very much with the increase in the 

number of processors. Messages to non-local objects are always routed through the “home” 

processor 0. The rate of arrival for those messages increases however, tha t explains the 

slight increase in the runtime for HB LMP.

The execution time of the benchmark is increasing almost linearly as we increase the 

number of processors for BU LMP. The reason for this is tha t the time spent during the 

initialization stage dominates the execution time. During the initialization all objects are 

distributed among the processors, and for each object processor 0 has to send n  updates. 

The performance of BU LMP for netsort is determined by the update traffic. In netsort4 

the initialization stage is becoming more expensive as we add more processors, while the 

runtime update costs per processor decrease.
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F ig u re  4.13: Breakdown of point-to-point message types for netsort4, 32 processors.

The evaluated LMPs have totally different relative performance for the netsort5 bench­

mark. Each processor in this benchmark creates equal number of mobile pointers, i.e., the 

LM overheads at “home” processors are balanced. Figure 4.14 shows, th a t the communi­

cation on processor 0 is no longer the determining factor in the application performance. 

Although it performs slightly more communication (compared to other processors) during 

the initial stage of the algorithm, the application performance depends more on the average 

load of processors. We observe th a t out of the three forwarding LMPs, PC LMP gives the 

best results, because it provides the shortest message path. Behavior of HB LMP is very dif-
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F ig u re  4.14: Breakdown of point-to-point message types for netsort5 , 32 processors.

ferent. The bottleneck is eliminated and all the processor on average receive equal number 

of messages. HB LMP also has very short forwarding path. This explains good scalability 

of HB LMP for the netsort5 benchmark. The performance of BU LMP improves as we 

increase the number of processors: the initialization costs and update costs per processor 

decrease (fewer objects are created per processor).

In the next series of experiments we studied the effect of different application parameters 

on the performance of the LMPs. One of such parameters is the mobile message payload. 

Figure 4.15 shows th a t the difference in message size affects the execution time, but not the
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F ig u re  4 .15: netsort4 benchmark with 1 Kbyte message payload.

relative performance of different LMPs (the message is 10 times smaller compared to the 

previous test with netsort4)-

Access-to-mobility ratio A in PDC applications is analogous to CMR in cellular networks. 

For a given application, A =  where a is total number of accesses (search operations) to 

objects and m  is the to tal number of object migrations. A has been used as a parameter 

in the study of forwarding techniques performed in [27]. The netsort4 and netsort5 bench­

marks have been modified to  experiment with different values of A and see the impact of 

those changes on the application performance. Figures 4.16 and 4.17 show performance 

results of running netsortJf. and netsort5 benchmarks with A «  20 (a sortnode is migrated 

once every 20 stages).

Our results show, th a t the change in access-to-mobility ratio can change the performance 

of an application when using different LMPs. BU LMP achieves the best execution times 

for netsort4 when A ~  20, while for the same test with A «  1 it had poor performance.
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F ig u re  4.16: Execution times of netsort4  with A «  20.

The to tal number of movements decreased. The update operation is very expensive for BU 

LMP, and higher values of A allow for better amortization of the update costs.

The significant difference between EU and JU LMP can be observed from figure 4.17. 

EU LMP sends updates when an object moves, while JU updates the sender immediately 

after the message arrives. The distribution hops for mobile messages is shown in figure 4.18. 

Apparently, the average length of message path is shorter for JU LMP than for EU LMP, 

thus JU is more effective overall.

The netsort4 experiment shows, th a t the change in A does not impact the performance 

of HB LMP. All messages are still routed through the single “home” node, and the total 

number of messages is the same as in the previous test. The slight improvement in runtime 

is due to  the reduction of communication on processor 0 (less updates are sent). The level 

of concurrency is lower, and hence the information in 0’s directory is correct more often.

The same experiment with different A for netsort5 shows the reduction in the execution



CH APTER 4. EVALU ATIO N 59

150

140 Lazy Forwarding 
Jump Update 
Path Compression 
Broadcast Update 
Home-Based 
Eager Update

130

120

110

100
ou
§■a

128
number of processors

F ig u re  4.17: Execution tim es of netsort5  with A ~  20.

time for all LMPs. BU LMP again performs much better than in the netsort5 with A & 1 

because of significantly fewer object migrations and thus fewer updates. LF LMP has very 

bad performance compared with other algorithms. The absence of update mechanisms leads 

to  significant performance degradation in applications with high access-to-mobility ratio.

The last set of netsort experiments was aimed to evaluate the impact of the network on 

the performance of the studied policies. PU LMP has been designed specifically to address 

the issue of network partitioning. For this test we configured PU LMP implementation 

so tha t the processors are partitioned according to the switch of the network testbed they 

are attached. Link bandwidth is 10 Mbps between partitions and 100 Mbps within each 

partition.

We ran netsort4 benchmark with A «  1 and message payload 1 Kbyte on the experi­

mental testbed with 10/100 Mbps configuration. We discovered, tha t for tha t experiment 

PU and HB LMPs outperform all other algorithms. The to tal execution time of the appli-
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F ig u re  4.18: Number of hops for a message to reach the object, A «  20; netsort4 , 32 processors.

cation on the regular network configuration and on the experimental testbed is shown in 

figure 4.19. The computing nodes used in this experiment are the same as in the previous 

case, where we also used 32 nodes of Typhoon subcluster.

The results of HB LMP are explained by the previously shown data: most of the mes­

sages reach the target in two hops. W hen the number of hops increases, so does the prob­

ability of a message to be forwarded through the inter-partition network link. PU LMP 

achieves high efficiency for the two reasons: (1) the location information is updated with 

lower network costs compared to BU LMP; (2) it provides good average for the forwarding 

chain length.

We used PCDT end-to-end benchmark to perform analogous study of the evaluated 

LMPs. On each iteration of the benchmark we choose 20% of the subdomains which require 

processing by the PCDT algorithm. These “heavy” subdomains have to be balanced among 

the processors. The test case consisted of 20 iterations. Aggregation level was set to
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50. Unequal load distribution was balanced by the ILB layer of PREMA using work- 

stealing method [13]. The execution times of this benchmark for different LMPs is given in 

figure 4.20, and the hop distribution in figure 4.21.

The difference in hop distribution caused by difference in LMP is similar to the one we 

observed in the netsort benchmarks. However, the execution time is not affected as much as 

it was in our previous experiments. All of the LMPs have about the same performance (the 

difference is within 10% except for the BU LMP). We identified a number of possible reasons 

for such behavior. The significant difference between netsort and PCDT benchmarks is that 

the la tter is using ILB module. The ILB implementation is multi-threaded: the polling 

thread is running concurrently with the main application thread [12]. Another difference 

of the PCDT test is the significant increase of the computational complexity compared 

to communication-dependent netsort. As a side-effect of polling, forwarding and update 

messages can be processed on the background simultaneously with the application handler 

execution. This would definitely hide the latencies introduced by LMPs.

Another interesting observation we have made is tha t the choice of LMP is somehow 

affecting the ILB work migration decisions. Figure 4.22 shows, th a t there is significant 

difference in the total number of objects migrated for different LMPs (the difference is 

especially large between JU and HB LM Ps). The reasons for such a difference are not clear 

to us and have to be studied further.
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The performance study described in this chapter shows, th a t location management policy 

may have significant impact on the application performance. The im portant conclusion 

of the evaluation is th a t the choice of mechanisms used for location management for a 

particular application cannot be disregarded.

The comparison of results we obtained from netsort4 and netsort5 benchmarks shows 

how im portant it is to  have a balanced assignment of the mobile objects to “home” pro­

cessors. This assignment can be handled by the runtime system and should be evaluated 

in the future. Another implementation detail which should be considered is multithreaded 

runtime system implementation. In the context of location management, multithreading 

together with the idea of multiple communication channels can eliminate interference of 

application with LMP.
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Chapter 5

Conclusions and Future Work

Efficiency, performance, and the costs of development and maintenance for scientific com­

puting applications are directly dependent on the quality and capabilities of the runtime 

software. Clam, the runtime system we present in this thesis, addresses these issues along 

with a number of previously unresolved runtime support problems within the PREMA 

framework. We made PREMA more stable, improved its portability, performance, and 

usability by rebalancing the three fundamental issues: correctness, performance, and ease- 

of-use.

The second major contribution of our work is in the survey, comparison and evaluation 

of location management techniques for parallel distributed computation applications. The 

problem of location management in PDC has not been carefully examined previously within 

the described model. Our results show, tha t location management is extremely im portant 

for some PDC applications. Moreover, we show tha t the optimal choice of a LMP for certain 

highly coupled communication intensive applications depends on multiple factors: number 

of nodes involved in the computation, properties of the communication network, migration 

and communication patterns of the application. At the same time, our preliminary data 

also show th a t for loosely coupled applications location management does not play a sig­

65
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nificant role in the application performance (PCDT benchmark). The conclusion from our 

preliminary evaluation tha t location management must be considered during the applica­

tion development. It may be crucial for an application to have the ability to choose the 

most appropriate LMP. Clam has been designed to provide this choice to the application.

The study of location management we have done answered the main question we asked: 

”Is location management relevant?” There is a number of issues we want to investigate 

next. A separate study has to be done on how to choose the optimal LMP for a specific 

application and platform configuration. In this thesis we have identified and implemented 

only the most intuitive location management techniques. W ith the results we have collected 

in this evaluation, new LMPs can be designed and implemented within Clam which com­

bine features of the evaluated LMPs and thus meet application needs better. We plan to 

investigate the feasibility and relevance of dynamic LM, where the most appropriate LMP 

would be chosen based on the current properties of the application and/or environment 

(network). We also need to study how different load-balancing algorithms are affected by 

LM.

Finally, our results show tha t network bandwidth impacts the relative performance of 

LMPs. Location management techniques which take network properties into account have 

better performance than LMPs which do not take this into consideration. Further, we need 

to explore in detail how other param eters of the interconnect (network latency, packet loss 

etc.) affect location management.
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